Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Hypertens ; 41(6): 951-957, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2258584

ABSTRACT

AIM: The pulse wave response to salbutamol (PWRS) - change in augmentation index (AIx) - provides a means to assess endothelial vasodilator function in vivo . Endothelial dysfunction plays a relevant role in the pathogenesis of hypertension and cardiovascular disease and appears to underlie many of the complications of coronavirus disease 2019 (COVID-19). However, to what degree this persists after recovery is unknown. METHODS: Individuals previously hospitalized with COVID-19, those recovered from mild symptoms and seronegative controls with well known risk factors for endothelial dysfunction were studied. To assess the involvement of nitric oxide-cyclic guanosine monophosphate pathway (NO-cGMP) on PWRS, sildenafil was also administrated in a subsample. RESULTS: One hundred and one participants (60 men) aged 47.8 ±â€Š14.1 (mean ±â€ŠSD) years of whom 33 were previously hospitalized with COVID-19 were recruited. Salbutamol had minimal effect on haemodynamics including blood pressure and heart rate. It reduced AIx in controls ( n  = 34) and those recovered from mild symptoms of COVID-19 ( n  = 34) but produced an increase in AIx in those previously hospitalized: mean change [95% confidence interval] -2.85 [-5.52, -0.188] %, -2.32 [-5.17,0.54] %, and 3.03 [0.06, 6.00] % for controls, those recovered from mild symptoms and those previously hospitalized, respectively ( P  = 0.001). In a sub-sample ( n  = 22), sildenafil enhanced PWRS (change in AIx 0.05 [-2.15,2.24] vs. -3.96 [-7.01. -2.18], P  = 0.006) with no significant difference between hospitalized ( n  = 12) and nonhospitalized participants ( n  = 10). CONCLUSIONS: In patients previously hospitalized with COVID-19, there is long-lasting impairment of endothelial function as measured by the salbutamol-induced stimulation of the NO-cGMP pathway that may contribute to cardiovascular complications.


Subject(s)
COVID-19 , Hypertension , Male , Humans , Vasodilation , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Adrenergic Agents/pharmacology , Endothelium, Vascular , COVID-19/complications , Vasodilator Agents/pharmacology , Albuterol/pharmacology , Albuterol/therapeutic use
2.
Am J Physiol Heart Circ Physiol ; 324(6): H713-H720, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2273649

ABSTRACT

Many individuals who had coronavirus disease 2019 (COVID-19) develop detrimental persistent symptoms, a condition known as postacute sequelae of COVID-19 (PASC). Despite the elevated risk of cardiovascular disease following COVID-19, limited studies have examined vascular function in PASC with equivocal results reported. Moreover, the role of PASC symptom burden on vascular health has not been examined. We tested the hypothesis that peripheral and cerebral vascular function would be blunted and central arterial stiffness would be elevated in patients with PASC compared with age-matched controls. Furthermore, we hypothesized that impairments in vascular health would be greater in those with higher PASC symptom burden. Resting blood pressure (BP; brachial and central), brachial artery flow-mediated dilation (FMD), forearm reactive hyperemia, carotid-femoral pulse wave velocity (PWV), and cerebral vasodilator function were measured in 12 females with PASC and 11 age-matched female controls without PASC. The severity of persistent symptoms in those with PASC was reported on a scale of 1-10 (higher score: greater severity). Brachial BP (e.g., systolic BP, 126 ± 19 vs.109 ± 8 mmHg; P = 0.010), central BP (P < 0.050), and PWV (7.1 ± 1.2 vs. 6.0 ± 0.8 m/s; P = 0.015) were higher in PASC group compared with controls. However, FMD, reactive hyperemia, and cerebral vasodilator function were not different between groups (P > 0.050 for all). Total symptom burden was not correlated with any measure of cardiovascular health (P > 0.050 for all). Collectively, these findings indicate that BP and central arterial stiffness are elevated in females with PASC, whereas peripheral and cerebral vascular function appear to be unaffected, effects that appear independent of symptom burden.NEW & NOTEWORTHY We demonstrate for the first time that resting blood pressure (BP) and central arterial stiffness are higher in females with PASC compared with controls. In contrast, peripheral and cerebral vascular functions appear unaffected. Moreover, there was no relationship between total PASC symptom burden and measures of BP, arterial stiffness, or vascular function. Collectively, these findings suggest that females with PASC could be at greater risk of developing hypertension, which appears independent of symptom burden.


Subject(s)
COVID-19 , Hyperemia , Vascular Stiffness , Humans , Female , Pulse Wave Analysis , COVID-19/complications , Blood Pressure , Vasodilator Agents/pharmacology , Brachial Artery
3.
Peptides ; 157: 170848, 2022 11.
Article in English | MEDLINE | ID: covidwho-1967000

ABSTRACT

Angiotensin (Ang) II, the main active member of the renin angiotensin system (RAS), is essential for the maintenance of cardiovascular homeostasis. However, hyperactivation of the RAS causes fibrotic diseases. Ang II has pro-inflammatory actions, and moreover activates interstitial fibroblasts and/or dysregulates extracellular matrix degradation. The discovery of new RAS pathways has revealed the complexity of this system. Among the RAS peptides, alamandine (ALA, Ala1 Ang 1-7) has been identified in humans, rats, and mice, with protective actions in different pathological conditions. ALA has similar effects to its well-known congener, Ang-(1-7), as a vasodilator, anti-inflammatory, and antifibrotic. Its protective role against cardiovascular diseases is well-reviewed in the literature. However, the protective actions of ALA in fibrotic conditions have been little explored. Therefore, in this article, we review the ability of ALA to modulate the inflammatory process and collagen deposition, to serve as an antioxidant, and to mediate protection against functional disorders. In this scenario, we also explore ALA as a promising therapy for pulmonary fibrosis after COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Peptidyl-Dipeptidase A , Angiotensin II/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Collagen/metabolism , Fibrosis , Humans , Mice , Oligopeptides , Peptidyl-Dipeptidase A/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System , Vasodilator Agents/pharmacology
4.
Nitric Oxide ; 121: 20-33, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1665319

ABSTRACT

Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.


Subject(s)
Critical Illness , Hypertension, Pulmonary/drug therapy , Infant, Newborn, Diseases/drug therapy , Nitric Oxide/therapeutic use , Vasodilator Agents/therapeutic use , Adult , COVID-19/complications , COVID-19/virology , Humans , Hypertension, Pulmonary/etiology , Infant, Newborn , Infant, Newborn, Diseases/etiology , Nitric Oxide/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Vasodilator Agents/pharmacology , COVID-19 Drug Treatment
5.
PLoS One ; 17(1): e0262737, 2022.
Article in English | MEDLINE | ID: covidwho-1631070

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19), emerged in late 2019, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The risk factors for idiopathic pulmonary fibrosis (IPF) and COVID-19 are reported to be common. This study aimed to determine the potential role of differentially expressed genes (DEGs) common in IPF and COVID-19. MATERIALS AND METHODS: Based on GEO database, we obtained DEGs from one SARS-CoV-2 dataset and five IPF datasets. A series of enrichment analysis were performed to identify the function of upregulated and downregulated DEGs, respectively. Two plugins in Cytoscape, Cytohubba and MCODE, were utilized to identify hub genes after a protein-protein interaction (PPI) network. Finally, candidate drugs were predicted to target the upregulated DEGs. RESULTS: A total of 188 DEGs were found between COVID-19 and IPF, out of which 117 were upregulated and 71 were downregulated. The upregulated DEGs were involved in cytokine function, while downregulated DEGs were associated with extracellular matrix disassembly. Twenty-two hub genes were upregulated in COVID-19 and IPF, for which 155 candidate drugs were predicted (adj.P.value < 0.01). CONCLUSION: Identifying the hub genes aberrantly regulated in both COVID-19 and IPF may enable development of molecules, encoded by those genes, as therapeutic targets for preventing IPF progression and SARS-CoV-2 infections.


Subject(s)
COVID-19/genetics , Idiopathic Pulmonary Fibrosis/genetics , COVID-19/pathology , COVID-19/virology , Databases, Genetic , Down-Regulation/drug effects , Down-Regulation/genetics , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , SARS-CoV-2/isolation & purification , Suloctidil/pharmacology , Suloctidil/therapeutic use , Up-Regulation/drug effects , Up-Regulation/genetics , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use
7.
Int J Mol Sci ; 22(5)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1129730

ABSTRACT

According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time-from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide-cyclic guanosine monophosphate activation, prostacyclin-cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.


Subject(s)
Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Plants/chemistry , Secondary Metabolism , Endothelium, Vascular/cytology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants/metabolism , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacology
8.
Ann Am Thorac Soc ; 17(8): 918-921, 2020 08.
Article in English | MEDLINE | ID: covidwho-853546

ABSTRACT

Amid efforts to care for the large number of patients with coronavirus disease (COVID-19), there has been considerable speculation about whether the lung injury seen in these patients is different than acute respiratory distress syndrome from other causes. One idea that has garnered considerable attention, particularly on social media and in free open-access medicine, is the notion that lung injury due to COVID-19 is more similar to high-altitude pulmonary edema (HAPE). Drawing on this concept, it has also been proposed that treatments typically employed in the management of HAPE and other forms of acute altitude illness-pulmonary vasodilators and acetazolamide-should be considered for COVID-19. Despite some similarities in clinical features between the two entities, such as hypoxemia, radiographic opacities, and altered lung compliance, the pathophysiological mechanisms of HAPE and lung injury due to COVID-19 are fundamentally different, and the entities cannot be viewed as equivalent. Although of high utility in the management of HAPE and acute mountain sickness, systemically delivered pulmonary vasodilators and acetazolamide should not be used in the treatment of COVID-19, as they carry the risk of multiple adverse consequences, including worsened ventilation-perfusion matching, impaired carbon dioxide transport, systemic hypotension, and increased work of breathing.


Subject(s)
Altitude Sickness , Coronavirus Infections , Hypertension, Pulmonary , Pandemics , Pneumonia, Viral , Respiratory Distress Syndrome , Acetazolamide/pharmacology , Altitude Sickness/physiopathology , Altitude Sickness/therapy , Betacoronavirus/isolation & purification , COVID-19 , Carbonic Anhydrase Inhibitors/pharmacology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Humans , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/therapy , Lung Injury/etiology , Lung Injury/physiopathology , Lung Injury/therapy , Nifedipine/pharmacology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Vasodilator Agents/pharmacology , COVID-19 Drug Treatment
10.
Turk Kardiyol Dern Ars ; 48(4): 410-424, 2020 06.
Article in English | MEDLINE | ID: covidwho-622990

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the effectiveness of plants used in the formulations of traditional Chinese medicine (TCM), which were also used in clinical trials to treat patients with the novel coronavirus COVID-19, and to assess their effects on the cardiovascular system. METHODS: A literature review of PubMed, ResearchGate, ScienceDirect, the Cochrane Library, and TCM monographs was conducted and the effects of the plants on the cardiovascular system and the mechanisms of action in COVID-19 treatment were evaluated. RESULTS: The mechanism of action, cardiovascular effects, and possible toxicity of 10 plants frequently found in TCM formulations that were used in the clinical treatment of COVID-19 were examined. CONCLUSION: TCM formulations that had been originally developed for earlier viral diseases have been used in COVID-19 treatment. Despite the effectiveness seen in laboratory and animal studies with the most commonly used plants in these formulations, the clinical studies are currently insufficient according to standard operating procedures. More clinical studies are needed to understand the safe clinical use of traditional plants.


Subject(s)
Cardiovascular System/drug effects , Coronavirus Infections/therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/therapy , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/toxicity , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/toxicity , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , COVID-19 , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channel Blockers/toxicity , Drug Interactions , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/toxicity , Humans , Pandemics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/toxicity , Vasodilator Agents/pharmacology , Vasodilator Agents/therapeutic use , Vasodilator Agents/toxicity
11.
Br J Pharmacol ; 177(2): 314-327, 2020 01.
Article in English | MEDLINE | ID: covidwho-613365

ABSTRACT

BACKGROUND AND PURPOSE: Chloroquine is a traditional medicine to treat malaria. There is increasing evidence that chloroquine not only induces phagocytosis but regulates vascular tone. Few reports investigating the effect of chloroquine on vascular responsiveness of coronary arteries have been made. In this study, we examined how chloroquine affected endothelium-dependent relaxation in coronary arteries under normal and diabetic conditions. EXPERIMENTAL APPROACH: We isolated coronary arteries from mice and examined endothelium-dependent relaxation (EDR). Human coronary endothelial cells and mouse coronary endothelial cells isolated from control and diabetic mouse (TALLYHO/Jng [TH] mice, a spontaneous type 2 diabetic mouse model) were used for the molecular biological or cytosolic NO and Ca2+ measurements. KEY RESULTS: Chloroquine inhibited endothelium-derived NO-dependent relaxation but had negligible effect on endothelium-derived hyperpolarization (EDH)-dependent relaxation in coronary arteries of control mice. Chloroquine significantly decreased NO production in control human coronary endothelial cells partly by phosphorylating eNOSThr495 (an inhibitory phosphorylation site of eNOS) and attenuating the rise of cytosolic Ca2+ concentration after stimulation. EDR was significantly inhibited in diabetic mice in comparison to control mice. Interestingly, chloroquine enhanced EDR in diabetic coronary arteries by, specifically, increasing EDH-dependent relaxation due partly to its augmenting effect on gap junction activity in diabetic mouse coronary endothelial cells. CONCLUSIONS AND IMPLICATIONS: These data indicate that chloroquine affects vascular relaxation differently under normal and diabetic conditions. Therefore, the patients' health condition such as coronary macrovascular or microvascular disease, with or without diabetes, must be taken account into the consideration when selecting chloroquine for the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Coronary Vessels/drug effects , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Calcium Signaling/drug effects , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Gap Junctions/drug effects , Gap Junctions/metabolism , Humans , Male , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL